Spidroin Silk Fibers with Bioactive Motifs of Extracellular Proteins for Neural Tissue Engineering
نویسندگان
چکیده
منابع مشابه
Bioactive Thermoresponsive Hydrogels for Neural Tissue Engineering
Traumatic injury to the central nervous system triggers cell death and deafferentation, which may activate a cascade of cellular and network disturbances. These events often result in the formation of irregularly shaped lesions comprised of necrotic tissue and/or a fluid-filled cavity. Tissue engineering represents a promising treatment strategy for the injured neural tissue. To facilitate mini...
متن کاملBiohybrid Carbon Nanotube/Agarose Fibers for Neural Tissue Engineering.
We report a novel approach for producing carbon nanotube fibers (CNF) composed with the polysaccharide agarose. Current attempts to make CNF's require the use of a polymer or precipitating agent in the coagulating bath that may have negative effects in biomedical applications. We show that by taking advantage of the gelation properties of agarose one can substitute the bath with distilled water...
متن کاملModification of sericin-free silk fibers for ligament tissue engineering application.
Biomedical application of silk requires the removal of sericin that is the gumming material of native silk fibers. This is because sericin can elicit an adverse immune response after implantation in the human body. However, the removal of sericin causes the silk fiber to fray and weakens its structural property, making it very difficult to knit or braid them into a scaffold for ligament tissue ...
متن کاملMultilayered silk scaffolds for meniscus tissue engineering.
Removal of injured/damaged meniscus, a vital fibrocartilaginous load-bearing tissue, impairs normal knee function and predisposes patients to osteoarthritis. Meniscus tissue engineering solution is one option to improve outcomes and relieve pain. In an attempt to fabricate knee meniscus grafts three layered wedge shaped silk meniscal scaffold system was engineered to mimic native meniscus archi...
متن کاملReinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering
The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACS Omega
سال: 2021
ISSN: 2470-1343,2470-1343
DOI: 10.1021/acsomega.1c01576